Cart (Loading....) | Create Account
Close category search window
 

Joint Data Detection and Channel Estimation for Fading Unknown Time-Varying Doppler Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vilaipornsawai, U. ; Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC, Canada ; Leib, H.

This work considers a joint channel estimation and data detection technique for Multiple Space-Time Trellis Codes (MSTTCs) operating over unknown time-varying channels with large Doppler spread. We propose an algorithm, called Doppler Adaptive Smoothed Data Detection and Kalman Estimation (DA-SDD-KE), that jointly detects data and estimates the channel as well as the time-varying Doppler. In this scheme, an Adaptive Kalman Predictor (AKP) consisting of a KP and a covariance-based Doppler estimator is incorporated into a Per-Survivor Processing (PSP)-based algorithm that utilizes the past, present and future received symbols for smoothed data detection. For comparison purposes, we also develop a Doppler Adaptive version of the Delayed Mixture Kalman Filtering (DMKF) technique, referred to as DA-DMKF, where the adaptive estimations of the channel and the Doppler shift are based on sequences of importance samples. Moreover, we propose a model for generating a Rayleigh fading process with time-varying Doppler using the sum of sinusoids method. The performance of the DA-SDD-KE and DA-DMKF algorithms over channels with constant, linear and quadratic Doppler functions is evaluated using computer simulations, revealing that the DA-SDD-KE algorithm performs well for all considered Doppler functions, and provides a considerably gain over the DA-DMKF algorithm.

Published in:

Communications, IEEE Transactions on  (Volume:58 ,  Issue: 8 )

Date of Publication:

August 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.