By Topic

A real time hand gesture recognition system using motion history image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen-Chiung Hsieh ; Dept. of Comput. Sci. & Eng., Tatung Univ., Taipei, Taiwan ; Dung-Hua Liou ; Lee, D.

Hand gesture recognition based man-machine interface is being developed vigorously in recent years. Due to the effect of lighting and complex background, most visual hand gesture recognition systems work only under restricted environment. An adaptive skin color model based on face detection is utilized to detect skin color regions like hands. To classify the dynamic hand gestures, we developed a simple and fast motion history image based method. Four groups of haar-like directional patterns were trained for the up, down, left, and right hand gestures classifiers. Together with fist hand and waving hand gestures, there were totally six hand gestures defined. In general, it is suitable to control most home appliances. Five persons doing 250 hand gestures at near, medium, and far distances in front of the web camera were tested. Experimental results show that the accuracy is 94.1% in average and the processing time is 3.81 ms per frame. These demonstrated the feasibility of the proposed system.

Published in:

Signal Processing Systems (ICSPS), 2010 2nd International Conference on  (Volume:2 )

Date of Conference:

5-7 July 2010