By Topic

Statistical and entropy based multi purpose human motion analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chin-Poo Lee ; Faculty of Information Science and Technology, Multimedia University, Ayer Keroh, Malaysia ; Kian-Ming Lim ; Wei-Lee Woon

As visual surveillance systems are gaining wider usage in a variety of fields, they need to be embedded with the capability to interpret scenes automatically, which is known as human motion analysis (HMA). However, existing HMA methods are too domain specific and computationally expensive. This paper proposes a general purpose HMA method. It is based on the idea that human beings tend to exhibit random motion patterns during abnormal situations. Hence, angular and linear displacements of limb movements are characterized using basic statistical quantities. In addition, it is enhanced with the entropy of the Fourier spectrum to measure the randomness of the abnormal behavior. Various experiments have been conducted and prove that the proposed method has very high classification accuracy in identifying anomalous behavior.

Published in:

Signal Processing Systems (ICSPS), 2010 2nd International Conference on  (Volume:1 )

Date of Conference:

5-7 July 2010