By Topic

A new Two-Center Ellipsoidal Basis Function neural network for fault diagnosis of Analog Electronic Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kowalewski, M. ; Dept. of Optoelectron. & Electron. Syst., Gdansk Univ. of Technol., Gdansk, Poland ; Zielonko, R.

In the paper a new fault diagnosis-oriented neural network and a diagnostic method for localization of parametric faults in Analog Electronic Circuits (AECs) with tolerances is presented. The method belongs to the class of dictionary Simulation Before Test (SBT) methods. It utilizes dictionary fault signatures as a family of identification curves dispersed around nominal positions by component tolerances of the Circuit Under Test (CUT). A neural network based classifier with a new Two-Center Ellipsoidal Basis Functions (TCEBFs) is used for fault signature classification. The TCEBF classifier is more robust against component tolerances and multiple parametric faults in comparison with conventional Radial/Ellipsoidal Basis Function (RBF/EBF) neural networks. This article presents a description of the proposed diagnostic method, the construction procedure of the TCEBF, the architecture of the fault classifier and simulation results obtained for the low-pass analog filter.

Published in:

Information Technology (ICIT), 2010 2nd International Conference on

Date of Conference:

28-30 June 2010