Cart (Loading....) | Create Account
Close category search window
 

3D simulations of Si-detectors for high energy physics and astronomy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gärtner, K. ; Weierstrass Inst. for Appl. Anal. & Stochastics, Berlin, Germany

Si-detectors are a demanding field to advance 3D numerical device simulations. Depending on the application, very different requirements determine the design goal: space or terrestrial applications largely shift the weights with respect to the standard wishes like low power, low noise, high spatial, time and angle resolution, high speed, ..., as well as to special requests like the maximal charge handling capacity of the detector. The result is a large set of different, 3D structured designs. The basic size of the detector is defined by the absorption length of the particles to detect, hence it is often very large. This justifies the validity of the classic drift-diffusion model only to some extent, because particle trajectories may result in very local, high density sources of electron-hole pairs. Small length scales are introduced in modern low noise matrix pixel detectors, which integrate the first amplifier stage into each pixel. This adds design and geometric complexity but does not change the basic problems. The simulations contribute to the detector design, help to verify the input assumptions for the `readout electronics', and finally they are used to improve the interpretation of the measured data in the experiments, too. Therefore, verification of the 3D simulations by special experiments is part of the process. The text illustrates the limits of the presently existing methods, the models and the corresponding numerical algorithms using the most recent 3D designs and validation experiments.

Published in:

Mixed Design of Integrated Circuits and Systems (MIXDES), 2010 Proceedings of the 17th International Conference

Date of Conference:

24-26 June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.