Cart (Loading....) | Create Account
Close category search window
 

Efficient Utilization of Renewable Energy Sources by Gridable Vehicles in Cyber-Physical Energy Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saber, A.Y. ; Electr. & the uter Eng. Dept., Missouri Univ. of Sci. & Technol., Rolla, MO, USA ; Venayagamoorthy, G.K.

The main sources of emission today are from the electric power and transportation sectors. One of the main goals of a cyber-physical energy system (CPES) is the integration of renewable energy sources and gridable vehicles (GVs) to maximize emission reduction. GVs can be used as loads, sources and energy storages in CPES. A large CPES is very complex considering all conventional and green distributed energy resources, dynamic data from sensors, and smart operations (e.g., charging/discharging, control, etc.) from/to the grid to reduce both cost and emission. If large number of GVs are connected to the electric grid randomly, peak load will be very high. The use of conventional thermal power plants will be economically expensive and environmentally unfriendly to sustain the electrified transportation. Intelligent scheduling and control of elements of energy systems have great potential for evolving a sustainable integrated electricity and transportation infrastructure. The maximum utilization of renewable energy sources using GVs for sustainable CPES (minimum cost and emission) is presented in this paper. Three models are described and results of the smart grid model show the highest potential for sustainability.

Published in:

Systems Journal, IEEE  (Volume:4 ,  Issue: 3 )

Date of Publication:

Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.