By Topic

Optimal Design of a Grid-Cathode Structure in a Spherically Convergent Beam Fusion Device by Response-Surface Methodology Combined With Experimental Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Heung-Jin Ju ; Department of Electrical Engineering, Hanyang University, Seoul, South Korea ; Bongseong Kim ; Jeong-Ho Park ; Kwang-Cheol Ko

To apply fusion energy through a spherically convergent beam fusion (SCBF) device as a portable neutron source, neutron production is very important. The rate of production is greatly dependent upon the ion current, which is closely related to the potential-well structure within a grid cathode. In this paper, we propose a design method by varying the cathode-ring sizes to produce an optimal grid-cathode structure in an SCBF device. The optimization is based on response-surface methodology (RSM); however, full factorial design is also applied to increase the precision of optimization and reduce experiment iteration in the application of RSM. The finite-element method, combined with the flux-corrected transport algorithm, is employed to calculate the ion current. From the optimized model, a higher ion current is calculated, resulting in a deeper potential well.

Published in:

IEEE Transactions on Plasma Science  (Volume:38 ,  Issue: 10 )