Cart (Loading....) | Create Account
Close category search window
 

Facial Expression Recognition in JAFFE Dataset Based on Gaussian Process Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fei Cheng ; Dept. of Math., Beijing Jiaotong Univ., Beijing, China ; Jiangsheng Yu ; Huilin Xiong

The Gaussian process (GP) approaches to classification synthesize Bayesian methods and kernel techniques, which are developed for the purpose of small sample analysis. Here we propose a GP model and investigate it for the facial expression recognition in the Japanese female facial expression dataset. By the strategy of leave-one-out cross validation, the accuracy of the GP classifiers reaches 93.43% without any feature selection/extraction. Even when tested on all expressions of any particular expressor, the GP classifier trained by the other samples outperforms some frequently used classifiers significantly. In order to survey the robustness of this novel method, the random trial of 10-fold cross validations is repeated many times to provide an overview of recognition rates. The experimental results demonstrate a promising performance of this application.

Published in:

Neural Networks, IEEE Transactions on  (Volume:21 ,  Issue: 10 )
Biometrics Compendium, IEEE

Date of Publication:

Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.