By Topic

Frequency and Phase Mixed Coding in SSVEP-Based Brain--Computer Interface

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chuan Jia ; Department of Biomedical Engineering , Tsinghua University, Beijing, China ; Xiaorong Gao ; Bo Hong ; Shangkai Gao*

Frequency coding has been the traditional method implemented in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCI). However, it is limited in terms of possible target numbers and, consequently, inappropriate for certain applications involving liquid crystal display (LCD) with multiple stimuli. This paper proposes an innovative coding method for SSVEP that, through a combination of frequency and phase, increases the number of targets, thus it improves the information transfer rate (ITR). With this method, a BCI system with 15 targets was developed using three stimulus frequencies, which is five times as many targets as the traditional method. Additionally, this paper defines the concept of reference phase, and decodes the EEG by means of Fourier coefficient projections onto the reference phase directions. Through the optimization of lead position, reference phase, data segment length, and harmonic components, the average ITR exceeded 60 bits/min in a simulated online test with ten subjects.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:58 ,  Issue: 1 )