By Topic

Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Brox, T. ; Dept. of Electr. Eng. & Comput. Sci., Univ. of California at Berkeley, Berkeley, CA, USA ; Malik, J.

Optical flow estimation is classically marked by the requirement of dense sampling in time. While coarse-to-fine warping schemes have somehow relaxed this constraint, there is an inherent dependency between the scale of structures and the velocity that can be estimated. This particularly renders the estimation of detailed human motion problematic, as small body parts can move very fast. In this paper, we present a way to approach this problem by integrating rich descriptors into the variational optical flow setting. This way we can estimate a dense optical flow field with almost the same high accuracy as known from variational optical flow, while reaching out to new domains of motion analysis where the requirement of dense sampling in time is no longer satisfied.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 3 )