Cart (Loading....) | Create Account
Close category search window
 

Scalable Hybrid Wireless Network-on-Chip Architectures for Multicore Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ganguly, A. ; Dept. of Comput. Eng., Rochester Inst. of Technol., Rochester, NY, USA ; Chang, K. ; Deb, S. ; Pande, P.P.
more authors

Multicore platforms are emerging trends in the design of System-on-Chips (SoCs). Interconnect fabrics for these multicore SoCs play a crucial role in achieving the target performance. The Network-on-Chip (NoC) paradigm has been proposed as a promising solution for designing the interconnect fabric of multicore SoCs. But the performance requirements of NoC infrastructures in future technology nodes cannot be met by relying only on material innovation with traditional scaling. The continuing demand for low-power and high-speed interconnects with technology scaling necessitates looking beyond the conventional planar metal/dielectric-based interconnect infrastructures. Among different possible alternatives, the on-chip wireless communication network is envisioned as a revolutionary methodology, capable of bringing significant performance gains for multicore SoCs. Wireless NoCs (WiNoCs) can be designed by using miniaturized on-chip antennas as an enabling technology. In this paper, we present design methodologies and technology requirements for scalable WiNoC architectures and evaluate their performance. It is demonstrated that WiNoCs outperform their wired counterparts in terms of network throughput and latency, and that energy dissipation improves by orders of magnitude. The performance of the proposed WiNoC is evaluated in presence of various traffic patterns and also compared with other emerging alternative NoCs.

Published in:

Computers, IEEE Transactions on  (Volume:60 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.