Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Untangling Tanglegrams: Comparing Trees by Their Drawings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Venkatachalam, B. ; Dept. of Comput. Sci., UC Davis, Davis, CA, USA ; Apple, J. ; St.John, K. ; Gusfield, D.

A tanglegram is a pair of trees on the same set of leaves with matching leaves in the two trees joined by an edge. Tanglegrams are widely used in biology-to compare evolutionary histories of host and parasite species and to analyze genes of species in the same geographical area. We consider optimization problems in tanglegram drawings. We show a linear time algorithm to decide if a tanglegram admits a planar embedding by a reduction to the planar graph drawing problem. This problem was also studied by Fernau et al. A similar reduction to a graph crossing problem also helps to solve an open problem they posed, showing a fixed-parameter tractable algorithm for minimizing the number of crossings over all d-ary trees. For the case where one tree is fixed, we show an O(n( log n) algorithm to determine the drawing of the second tree that minimizes the number of crossings. This improves the bound from earlier methods. We introduce a new optimization criterion using Spearman's footrule distance and give an O(n2) algorithm. We also show integer programming formulations to quickly obtain tanglegram drawings that minimize the two optimization measures discussed. We prove lower bounds on the maximum gap between the optimal solution and the heuristic of Dwyer and Schreiber to minimize crossings.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:7 ,  Issue: 4 )