By Topic

Optimized Query Forgery for Private Information Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
David Rebollo-Monedero ; Department of Telematics Engineering, Technical University of Catalonia (UPC), Barcelona, Spain ; Jordi Forne

We present a mathematical formulation for the optimization of query forgery for private information retrieval, in the sense that the privacy risk is minimized for a given traffic and processing overhead. The privacy risk is measured as an information-theoretic divergence between the user's query distribution and the population's, which includes the entropy of the user's distribution as a special case. We carefully justify and interpret our privacy criterion from diverse perspectives. Our formulation poses a mathematically tractable problem that bears substantial resemblance with rate-distortion theory.

Published in:

IEEE Transactions on Information Theory  (Volume:56 ,  Issue: 9 )