By Topic

Single Event Upset and Multiple Cell Upset Modeling in Commercial Bulk 65-nm CMOS SRAMs and Flip-Flops

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Uznanski, S. ; Central CAD & Design Solutions, STMicroelectronics, Crolles, France ; Gasiot, G. ; Roche, P. ; Tavernier, C.
more authors

A proprietary Monte-Carlo simulation code dedicated to heavy ion cross-section prediction has been developed. The code is based on diffusion-collection equations, takes into account recombination processes, uses an improved drain strike model, and includes new upset analysis algorithms for different circuit architectures. Simulated cross-sections are compared to heavy ion experimental characterizations for commercial bulk 65-nm single- and dual-port SRAMs. Simulation capabilities of much more complex circuits are demonstrated considering a 65-nm radiation-hardened-by-design (RHBD) Flip-Flop (FF).

Published in:

Nuclear Science, IEEE Transactions on  (Volume:57 ,  Issue: 4 )