By Topic

The Relationship Between Causal and Noncausal Mismatched Estimation in Continuous-Time AWGN Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Weissman, T. ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA

A continuous-time finite-power process with distribution P is observed through an AWGN channel, at a given signal-to-noise ratio (SNR), and is estimated by an estimator that would have minimized the mean-square error if the process had distribution Q. We show that the causal filtering mean-square error (MSE) achieved at SNR level snr is equal to the average value of the noncausal (smoothing) MSE achieved with a channel whose SNR is chosen uniformly distributed between 0 and snr. Emerging as the bridge for equating these two quantities are mutual information and relative entropy. Our result generalizes that of Guo, Shamai, and Verdú (2005) from the nonmismatched case, where P = Q, to general P and Q. Among our intermediate results is an extension of Duncan's theorem, that relates mutual information and causal MMSE, to the case of mismatched estimation. Some further extensions and implications are discussed. Key to our findings is the recent result of Verdú on mismatched estimation and relative entropy.

Published in:

Information Theory, IEEE Transactions on  (Volume:56 ,  Issue: 9 )