By Topic

Building Detection From One Orthophoto and High-Resolution InSAR Data Using Conditional Random Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wegner, J.D. ; Inst. of Photogrammetry & Geolnformation, Leibniz Univ. of Hannover, Hannover, Germany ; Hänsch, R. ; Thiele, A. ; Soergel, U.

Today's airborne SAR sensors provide geometric resolution in the order well below half a meter. Many features of urban objects become visible in such data. However, layover and occlusion issues inevitably arise in urban areas complicating automated object detection. In order to support interpretation, SAR data may be analyzed using complementary information from maps or optical imagery. In this paper, an approach for building detection in urban areas based on object features extracted from high-resolution interferometric SAR (InSAR) data and one orthophoto is presented. Features describing local evidence as well as context information are used. Buildings are detected by classification of those feature vectors within a Conditional Random Field (CRF) framework. Although as graphical model similar to Markov Random Fields (MRF), CRFs have the advantage of incorporating global context information, of relaxing the conditional independence assumption between features, and of a more general integration of observations. We show that, first, CRFs perform well in comparison to Maximum Likelihood classifiers and MRFs. Second, the combined use of optical and InSAR features may improve detection results.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:4 ,  Issue: 1 )