By Topic

Multi-Objective Approaches to Optimal Testing Resource Allocation in Modular Software Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zai Wang ; Nature Inspired Computation and Applications Laboratory (NICAL), School of Computer Science and Technology, University of Science and Technology of China, Hefei, China ; Ke Tang ; Xin Yao

Software testing is an important issue in software engineering. As software systems become increasingly large and complex, the problem of how to optimally allocate the limited testing resource during the testing phase has become more important, and difficult. Traditional Optimal Testing Resource Allocation Problems (OTRAPs) involve seeking an optimal allocation of a limited amount of testing resource to a number of activities with respect to some objectives (e.g., reliability, or cost). We suggest solving OTRAPs with Multi-Objective Evolutionary Algorithms (MOEAs). Specifically, we formulate OTRAPs as two types of multi-objective problems. First, we consider the reliability of the system and the testing cost as two objectives. Second, the total testing resource consumed is also taken into account as the third objective. The advantages of MOEAs over state-of-the-art single objective approaches to OTRAPs will be shown through empirical studies. Our study has revealed that a well-known MOEA, namely Nondominated Sorting Genetic Algorithm II (NSGA-II), performs well on the first problem formulation, but fails on the second one. Hence, a Harmonic Distance Based Multi-Objective Evolutionary Algorithm (HaD-MOEA) is proposed and evaluated in this paper. Comprehensive experimental studies on both parallel-series, and star-structure modular software systems have shown the superiority of HaD-MOEA over NSGA-II for OTRAPs.

Published in:

IEEE Transactions on Reliability  (Volume:59 ,  Issue: 3 )