Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Topological Transformation Approaches to TCAM-Based Packet Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Meiners, C.R. ; Dept. of Comput. Sci. & Eng., Michigan State Univ., East Lansing, MI, USA ; Liu, A.X. ; Torng, E.

Several range reencoding schemes have been proposed to mitigate the effect of range expansion and the limitations of small capacity, large power consumption, and high heat generation of ternary content addressable memory (TCAM)-based packet classification systems. However, they all disregard the semantics of classifiers and therefore miss significant opportunities for space compression. In this paper, we propose new approaches to range reencoding by taking into account classifier semantics. Fundamentally different from prior work, we view reencoding as a topological transformation process from one colored hyperrectangle to another, where the color is the decision associated with a given packet. Stated another way, we reencode the entire classifier by considering the classifier's decisions rather than reencode only ranges in the classifier ignoring the classifier's decisions as prior work does. We present two orthogonal, yet composable, reencoding approaches: domain compression and prefix alignment. Our techniques significantly outperform all previous reencoding techniques. In comparison to prior art, our experimental results show that our techniques achieve at least five times more space reduction in terms of TCAM space for an encoded classifier and at least three times more space reduction in terms of TCAM space for a reencoded classifier and its transformers. This, in turn, leads to improved throughput and decreased power consumption.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:19 ,  Issue: 1 )