By Topic

Efficient Motion Vector Recovery Algorithm for H.264 Using B-Spline Approximation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kavish Seth ; Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India ; V. Kamakoti ; S. Srinivasan

The H.264 encoded video is highly sensitive to loss of motion vectors during transmission. Several statistical techniques are proposed for recovering such lost motion vectors. These use only the motion vectors that belong to the macroblocks that are horizontally or vertically adjacent to the lost macroblock, to recover the latter. Intuitively this is one of the main reasons behind why these techniques yield inferior solutions in scenarios where there is a non-linear motion. This paper proposes B-Spline based statistical techniques that comprehensively address the motion vector recovery problem in the presence of different types of motions that include slow, fast/sudden, continuous and non-linear movements. Testing the proposed algorithms with different benchmark video sequences shows an average improvement of up to 2 dB in the Peak Signal to Noise Ratio of some of the recovered videos, over existing techniques. A 2 dB improvement in PSNR is very significant from an application point of view.

Published in:

IEEE Transactions on Broadcasting  (Volume:56 ,  Issue: 4 )