By Topic

Estimating Dominance in Multi-Party Meetings Using Speaker Diarization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hung, H. ; Univ. of Amsterdam, Amsterdam, Netherlands ; Yan Huang ; Friedland, G. ; Gatica-Perez, D.

With the increase in cheap commercially available sensors, recording meetings is becoming an increasingly practical option. With this trend comes the need to summarize the recorded data in semantically meaningful ways. Here, we investigate the task of automatically measuring dominance in small group meetings when only a single audio source is available. Past research has found that speaking length as a single feature, provides a very good estimate of dominance. For these tasks we use speaker segmentations generated by our automated faster than real-time speaker diarization algorithm, where the number of speakers is not known beforehand. From user-annotated data, we analyze how the inherent variability of the annotations affects the performance of our dominance estimation method. We primarily focus on examining of how the performance of the speaker diarization and our dominance tasks vary under different experimental conditions and computationally efficient strategies, and how this would impact on a practical implementation of such a system. Despite the use of a state-of-the-art speaker diarization algorithm, speaker segments can be noisy. On conducting experiments on almost 5 hours of audio-visual meeting data, our results show that the dominance estimation is robust to increasing diarization noise.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:19 ,  Issue: 4 )
Biometrics Compendium, IEEE