By Topic

Three-Dimensional SAR Focusing From Multipass Signals Using Compressive Sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alessandra Budillon ; Dipartimento per le Tecnologie, Università di Napoli “ Parthenope”, Centro Direzionale di Napoli, Isola C4, Napoli , Italy ; Annarita Evangelista ; Gilda Schirinzi

Three-dimensional synthetic aperture radar (SAR) image formation provides the scene reflectivity estimation along azimuth, range, and elevation coordinates. It is based on multipass SAR data obtained usually by nonuniformly spaced acquisition orbits. A common 3-D SAR focusing approach is Fourier-based SAR tomography, but this technique brings about image quality problems because of the low number of acquisitions and their not regular spacing. Moreover, attained resolution in elevation is limited by the overall acquisitions baseline extent. In this paper, a novel 3-D SAR data imaging based on Compressive Sampling theory is presented. It is shown that since the image to be focused has usually a sparse representation along the elevation direction (i.e., only few scatterers with different elevation are present in the same range-azimuth resolution cell), it suffices to have a small number of measurements to construct the 3-D image. Furthermore, the method allows super-resolution imaging, overcoming the limitation imposed by the overall baseline span. Tomographic imaging is performed by solving an optimization problem which enforces sparsity through ℓ1-norm minimization. Numerical results on simulated and real data validate the method and have been compared with the truncated singular value decomposition technique.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:49 ,  Issue: 1 )