By Topic

The Improvement of High- k /Metal Gate pMOSFET Performance and Reliability Using Optimized Si Cap/SiGe Channel Structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Wen-Kuan Yeh ; Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung, Taiwan ; Yu-Ting Chen ; Fon-Shan Huang ; Chia-Wei Hsu
more authors

The impact of the Si cap/SiGe layer on the Hf-based high-k /metal gate SiGe channel pMOSFET performance and reliability has been investigated. We proposed an optimized strain SiGe channel with a Si cap layer to overcome the Ge diffusion and confine the channel carriers in the strained SiGe layer without the formation of a significant parasitic channel at the interface. With this optimized Si/SiGe stack channel, a high-performance Hf-based high-k/metal gate SiGe pMOSFET can be obtained with an appropriate VTH (~0.3 V), low C -V hysteresis ( <; 5 mV), and better ION - IOFF , VTH rolloff, and VTH stability. By the way, the related interface trap density in the high-k gate stack layer can also be reduced, thus improving the device's NBTI and HCI stressing-induced reliability.

Published in:

IEEE Transactions on Device and Materials Reliability  (Volume:11 ,  Issue: 1 )