By Topic

Evaluation of Power Consumption in Low Spatial Complexity Optical Switching Fabrics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Eramo, V. ; INFOCOM Dept., Univ. of Rome Sapienza, Rome, Italy ; Germoni, A. ; Cianfrani, A. ; Listanti, M.
more authors

In this paper, we propose an analytical model to evaluate the power consumption in the switching fabric of a bufferless shared-per-wavelength (SPW) optical packet switch architecture in which one bank of wavelength converters (WC) is dedicated to each wavelength. We assume that both optical gates and WCs are realized in semiconductor optical amplifier technology. In our evaluation, we account for the power consumption of the current drivers needed to both controlling the used active devices and supplying the thermoelectric coolers. SPW allows for a complexity reduction of the spatial switching matrix that leads to reduced power consumption with respect to other switching architectures. Results show the effectiveness in terms of consumed power of the considered architecture with respect to the shared-per-node reference architecture, where a fully sharing strategy of WCs is adopted. The main results show that SPW allows us to reduce the power consumption in the order of 26% for offered traffic equal to 0.6. The obtained results also show how the fabric switching of the SPW optical packet switch consumes much less power per gigabits per second carried than the one of a typical commercial core router.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:17 ,  Issue: 2 )