Cart (Loading....) | Create Account
Close category search window
 

On the Information Geometry of Audio Streams With Applications to Similarity Computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cont, A. ; Inst. of Res. for Coordination of Acoust. & Music (IRCAM), Paris, France ; Dubnov, Shlomo ; Assayag, G.

This paper proposes methods for information processing of audio streams using methods of information geometry. We lay the theoretical groundwork for a framework allowing the treatment of signal information as information entities, suitable for similarity and symbolic computing on audio signals. The theoretical basis of this paper is based on the information geometry of statistical structures representing audio spectrum features, and specifically through the bijection between the generic families of Bregman divergences and that of exponential distributions. The proposed framework, called Music Information Geometry, allows online segmentation of audio streams to metric balls where each ball represents a quasi-stationary continuous chunk of audio, and discusses methods to qualify and quantify information between entities for similarity computing. We define an information geometry that approximates a similarity metric space, redefine general notions in music information retrieval such as similarity between entities, and address methods for dealing with nonstationarity of audio signals. We demonstrate the framework on two sample applications for online audio structure discovery and audio matching.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:19 ,  Issue: 4 )

Date of Publication:

May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.