Cart (Loading....) | Create Account
Close category search window
 

Growth of AlxGa1−xN epitaxial thin film on sapphire substrate by plasma assisted metal organic chemical vapor deposition (PA-MOCVD)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Arsyad, F.S. ; Dept. of Phys., Sriwijaya Univ., Palembang, Indonesia ; Arifin, P. ; Barmawi, M. ; Budiman, M.
more authors

This paper reported the study of growth of AlxGa1-xN thin film on a-plane sapphire substrate using plasma assisted metal organic chemical vapor deposition (PA-MOCVD). We have successfully growth the Al content AlGaN alloys and investigated the influence of TMA/TMAl+TMGa flow rate ratio to their crystal structure and surface morphology. From S EM image and XRD measurement, the AlGaN films grown with TMA/TMAl+TMGa flow rate ratio of 20% have single crystal orientation, homogeneous and smoother surface morphology. From ED X microanalysis results, all of the AlGaN alloys have high Al content. The Al content of the AlGaN alloys with TMA/TMAl+TMGa flow rate ratio of 20%, 30%, and 40% is about x = 0.5, 0.6, and 0.65, respectively and grown at the growth temperature about of 700°C.

Published in:

Semiconductor Electronics (ICSE), 2010 IEEE International Conference on

Date of Conference:

28-30 June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.