By Topic

On the effort of task completion for partially-failed manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abdi, Hamid ; Centre for Intell. Syst. Res., Deakin Univ., Melbourne, VIC, Australia ; Nahavandi, S. ; Najdovski, Z.

Adding to a previous work of the authors for task completion for partially failed manipulator, other aspects of the effort are discussed. The paper aims to investigate on the strategies of maximum effort for maintaining the availability of partially failed manipulators. The failures are assumed as the joint lock failures of the manipulators. The main objective is to facilitate the existing manipulators to continue their tasks even if a non catastrophic fault occurs into their joints. The tasks includes motion tasks and force tasks. For each group of tasks a constrained optimality problem is introduced. Then in a case study a required force profile on a desired trajectory using a 3DOF planar manipulator is indicated. Through this study the joint angles and joint torques for a healthy manipulator and a faulty manipulator are shown. It is illustrated that a failure in the second joint is tolerated on the trajectory of end-effector.

Published in:

Industrial Informatics (INDIN), 2010 8th IEEE International Conference on

Date of Conference:

13-16 July 2010