By Topic

Pulsed and continuous-wave operation of long wavelength infrared (λ=9.3 μm) quantum cascade lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sirtori, Carlo ; Bell Lab., Lucent Technol., Murray Hill, NJ, USA ; Faist, J. ; Capasso, F. ; Sivco, Deborah L.
more authors

The operation of quantum cascade lasers at a wavelength (λ≃9.3 μm) well within the 8-13-μm atmospheric window is reported. A detailed study of intersubband luminescence in a vertical transition structure shows linewidths as narrow as ~10 meV at cryogenic temperatures, increasing to 20 meV at room temperature. Pulsed operation is demonstrated up to 220 K with a peak power ≈10 mW and ≈35 mW at 140 K. The temperature dependence of the threshold current density (J th) is described by a high T0 (128 K), Jth is also systematically studied as a function of cavity length to determine the peak gain and waveguide losses. Continuous-wave, single-mode operation is demonstrated up to 30 K with powers ≈2 mW

Published in:

Quantum Electronics, IEEE Journal of  (Volume:33 ,  Issue: 1 )