By Topic

Noise analysis of frequency converters utilizing semiconductor-laser amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Obermann, K. ; Fachgebiet Hochfrequenztech., Tech. Univ. Berlin, Germany ; Koltchanov, I. ; Petermann, K. ; Diez, S.
more authors

This paper deals with a general problem concerning semiconductor-laser amplifiers used for frequency conversion. The amplified spontaneous emission (ASE) of a saturated amplifier is investigated experimentally and theoretically. An analytical solution accounting for the spatial dependence of the inversion parameter as well as the spectral dependence of the ASE is derived. Hence, the results can be applied to arbitrary saturation conditions and frequency shifts. Our theory is applied to frequency converters based on four-wave mixing and is found to be in good agreement with both the numerical results and the experimental data. In order to quantify the performance of a frequency converter, a noise figure is defined and shown to be strongly dependent on the frequency detuning and the power of the input waves

Published in:

Quantum Electronics, IEEE Journal of  (Volume:33 ,  Issue: 1 )