By Topic

Phase space engineering in optical microcavities I: Preserving near-field uniformity while inducing far-field directionality

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guillaume Painchaud-April ; Département de Physique, de Ginie Physique, et d'Optique, Université Laval, Quebec, QC G1V 0A6, Canada ; Julien Poirier ; Denis Gagnon ; Louis J. Dubé

Optical microcavities have received much attention over the last decade from different research fields ranging from fundamental issues of cavity QED to specific applications such as microlasers and bio-sensors. A major issue in the latter applications is the difficulty to obtain directional emission of light in the far-field while keeping high energy densities inside the cavity (i.e. high quality factor). To improve our understanding of these systems, we have studied the annular cavity (a dielectric disk with a circular hole), where the distance cavity-hole centers d is used as a parameter to alter the properties of cavity resonances. We present results showing how one can affect the directionality of the far-field while preserving the uniformity (hence the quality factor) of the near-field simply by increasing the value of d. Interestingly, the transition between a uniform near- and far-field to a uniform near- and directional far-field is rather abrupt. We can explain this behavior quite nicely with a simple model, supported by full numerical calculations, and we predict that the effect will also be found in a large class of eigenmodes of the cavity.

Published in:

2010 12th International Conference on Transparent Optical Networks

Date of Conference:

June 27 2010-July 1 2010