By Topic

Face recognition using enhanced linear discriminant analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hu, H. ; Sch. of Inf. Sci. & Technol., Sun Yat-sen Univ., Guangzhou, China ; Zhang, P. ; De la Torre, F.

There are two fundamental problems with the linear discriminant analysis (LDA) for face recognition. First one is LDA is not stable because of the small training sample size problem. The other is that it would collapse the data samples of different classes into one single cluster when the class distributions are multimodal. An enhanced LDA method is proposed to overcome these two problems. The between- and within-class scatters are reformulated by introducing two different weighted matrices in respective. The enhanced Fisher criterion is then presented, which can preserve the local structure of different class in the reduced subspace. Moreover, maximum margin criterion is adopted to avoid the singularity problem of the within-class scatter matrix. Extensive experiments show encouraging recognition performance of the proposed algorithm.

Published in:

Computer Vision, IET  (Volume:4 ,  Issue: 3 )