By Topic

Chaos control and noise suppression in external-cavity semiconductor lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kikuchi, N. ; Fac. of Eng., Shizuoka Univ., Hamamatsu, Japan ; Liu, Yun ; Ohtsubo, J.

Feedback-induced chaos and intensity noise enhancement in a laser diode with external optical feedback are studied by computer simulations. The enhancement of relative intensity noise (RIN) that is often observed in experiments is considered as a result of the feedback-induced deterministic chaos and the intensity noise suppression is treated from the viewpoint of chaos control. Especially, the conventional noise suppressing technique known as a high-frequency injection modulation is turned into a problem of stabilizing chaos through parameter modulations. We developed an analytical method which allows to optimize the modulation frequency from the linear stability analysis of the dynamical model that describes the laser diode with external feedback. The robustness of the modulation with respect to the modulation frequency and depth is verified and the results suggest the feasibility of applying our method to actual noise suppression. The RIN in the low-frequency region (up to 100 MHz) is shown to be reduced to the solitary laser level when the feedback-induced chaos is effectively controlled with the optimized modulation frequency

Published in:

Quantum Electronics, IEEE Journal of  (Volume:33 ,  Issue: 1 )