By Topic

Evolutionary optimization of a fuzzy rule-based network intrusion detection system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Terrence P. Fries ; Department of Computer Science, Indiana University of Pennsylvania, Indian, PA 15705 USA

The use of computer networks has increased significantly in recent years. This proliferation, in combination with the interconnection of networks via the Internet, has drastically increased their vulnerability to attack by malicious agents. The wide variety of attack modes has exacerbated the problem in detecting attacks. Many current intrusion detection systems (IDS) are unable to identify unknown or mutated attack modes or are unable to operate in a dynamic environment as is necessary with mobile networks. As a result, it has become increasingly important to find new ways to implement and manage intrusion detection systems. Evolutionary-based systems offer the ability to adapt to dynamic environments and to identify unknown attack methods. Fuzzy-based systems accommodate the imprecision associated with mutated and previously unidentified attack modes. This paper presents an evolutionary-fuzzy approach to intrusion detection that is shown to provide superior performance in comparison to other evolutionary approaches. In addition, the method demonstrates improved robustness in comparison to other evolutionary-based techniques.

Published in:

Fuzzy Information Processing Society (NAFIPS), 2010 Annual Meeting of the North American

Date of Conference:

12-14 July 2010