By Topic

Temperature dependent actuation voltage for longer MEMS switch lifetime

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lai, C.H. ; Sch. of Eng. & Sci., Swinburne Univ. of Technol., Kuching, Malaysia ; Wong, W.S.H.

A temperature dependent actuation voltage has been proposed to minimize the dielectric charging effect in micro-electromechanical system (MEMS) switch, leading to an improved switch lifetime. Mathematical models have been utilized to model the pull-in voltage variation throughout a range of thermal condition and simulate dielectric charging in the RF MEMS switch, enabling the analysis of charge built-up at the switch dielectric layer and substrate at different ambient temperature condition. The proposed temperature dependent actuation voltage has shown to reduce the dielectric charging effect of the RF MEMS switch as it minimize the applied actuation voltage to the MEMS switch during its long continuous operation.

Published in:

Quality Electronic Design (ASQED), 2010 2nd Asia Symposium on

Date of Conference:

3-4 Aug. 2010