By Topic

Fast segmentation of 3D point clouds for ground vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Himmelsbach, M. ; Dept. of Aerosp. Eng., Univ. of the Bundeswehr Munich, Neubiberg, Germany ; v Hundelshausen, F. ; Wuensche, H.

This paper describes a fast method for segmentation of large-size long-range 3D point clouds that especially lends itself for later classification of objects. Our approach is targeted at high-speed autonomous ground robot mobility, so real-time performance of the segmentation method plays a critical role. This is especially true as segmentation is considered only a necessary preliminary for the more important task of object classification that is itself computationally very demanding. Efficiency is achieved in our approach by splitting the segmentation problem into two simpler subproblems of lower complexity: local ground plane estimation followed by fast 2D connected components labeling. The method's performance is evaluated on real data acquired in different outdoor scenes, and the results are compared to those of existing methods. We show that our method requires less runtime while at the same time yielding segmentation results that are better suited for later classification of the identified objects.

Published in:

Intelligent Vehicles Symposium (IV), 2010 IEEE

Date of Conference:

21-24 June 2010