By Topic

Visual classification of coarse vehicle orientation using Histogram of Oriented Gradients features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Paul E. Rybski ; Faculty at The Robotics Institute at Carnegie Mellon University, Pittsburgh, PA, USA ; Daniel Huber ; Daniel D. Morris ; Regis Hoffman

For an autonomous vehicle, detecting and tracking other vehicles is a critical task. Determining the orientation of a detected vehicle is necessary for assessing whether the vehicle is a potential hazard. If a detected vehicle is moving, the orientation can be inferred from its trajectory, but if the vehicle is stationary, the orientation must be determined directly. In this paper, we focus on vision-based algorithms for determining vehicle orientation of vehicles in images. We train a set of Histogram of Oriented Gradients (HOG) classifiers to recognize different orientations of vehicles detected in imagery. We find that these orientation-specific classifiers perform well, achieving a 88% classification accuracy on a test database of 284 images. We also investigate how combinations of orientation-specific classifiers can be employed to distinguish subsets of orientations, such as driver's side versus passenger's side views. Finally, we compare a vehicle detector formed from orientation-specific classifiers to an orientation-independent classifier and find that, counter-intuitively, the orientation-independent classifier outperforms the set of orientation-specific classifiers.

Published in:

Intelligent Vehicles Symposium (IV), 2010 IEEE

Date of Conference:

21-24 June 2010