By Topic

Breast cancer diagnosis using a hybrid evolutionary neural network classifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
El Hamdi, R. ; Sfax Eng. Sch., Univ. of Sfax, Sfax, Tunisia ; Njah, M. ; Chtourou, M.

The important role that mammography is playing in breast cancer detection can be attributed largely to the technical improvements and dedication of radiologists to breast imaging. A lot of work is being done to ensure that these diagnosing steps are becoming smoother, faster and more accurate in classifying whether the abnormalities seen in mammogram images are benign or malignant. This paper takes a step in that direction by introducing a hybrid evolutionary neural network classifier (HENC) combining the evolutionary algorithm, which has a powerful global exploration capability, with gradient-based local search method, which can exploit the optimum offspring to develop a diagnostic aid that accurately differentiates malignant from benign pattern. The computational experiments show that the presented HENC approach can obtain better generalization and much lower computational cost than the existing methods reported recently in the literature using the widely accepted Wisconsin breast cancer diagnosis (WBCD) database with some improvements.

Published in:

Control & Automation (MED), 2010 18th Mediterranean Conference on

Date of Conference:

23-25 June 2010