By Topic

Feedforward compensation of exercise in diabetes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cantu, L. ; Electr. & Comput. Eng. Dept., Tecnol. de Monterrey, Monterrey, Mexico ; Sanchez, I.Y. ; Garza-Castanon, L. ; Martinez, S.O.

A nonlinear feedforward action based on the detection of exercise intensity is designed to prevent drastic blood glucose drops that may lead a diabetic patient to hypoglycemia. A physiological model is derived from the Bergman and the Sorensen models and the metabolic effects of physical activity. A statistical model for blood glucose rate is obtained through a discrete Wiener modeling technique. The statistical model is inverted for the calculation of an exogenous glucagon input that can cancel the blood glucose drop caused by exercise. Simulations show that the proposed feedforward control system satisfies the objective. Algorithm improvements as well as implementation with current commercial products are discussed.

Published in:

Control & Automation (MED), 2010 18th Mediterranean Conference on

Date of Conference:

23-25 June 2010