By Topic

Linear and nonlinear ARMA model parameter estimation using an artificial neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chon, K.H. ; Div. of Health Sci. & Technol., MIT, Cambridge, MA, USA ; Cohen, R.J.

Addresses parametric system identification of linear and nonlinear dynamic systems by analysis of the input and output signals. Specifically, the authors investigate the relationship between estimation of the system using a feedforward neural network model and estimation of the system by use of linear and nonlinear autoregressive moving-average (ARMA) models. By utilizing a neural network model incorporating a polynomial activation function, the authors show the equivalence of the artificial neural network to the linear and nonlinear ARMA models. They compare the parameterization of the estimated system using the neural network and ARMA approaches by utilizing data generated by means of computer simulations. Specifically, the authors show that the parameters of a simulated ARMA system can be obtained from the neural network analysis of the simulated data or by conventional least squares ARMA analysis. The feasibility of applying neural networks with polynomial activation functions to the analysis of experimental data is explored by application to measurements of heart rate (HR) and instantaneous lung volume (ILV) fluctuations.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:44 ,  Issue: 3 )