By Topic

Spectrum Sensing in Cognitive Radio Using a Markov-Chain Monte-Carlo Scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiao Yu Wang ; Univ. of Waterloo, Canada N2L 3G1 ; Alexander Wong ; Pin-Han Ho

In this letter, a novel stochastic strategy to spectrum sensing is investigated for the purpose of improving spectrum sensing efficiency of cognitive radio (CR) systems. The problem of selecting the optimal sequence of channels to finely sensing is formulated as an optimization problem to maximize the probability of obtaining available channels, and is then subsequently solved by using a Markov-Chain Monte-Carlo (MCMC) scheme. By employing a nonparametric approach such as the MCMC scheme, the reliance on specific traffic models is alleviated. Experimental results show that the proposed algorithm has the potential to achieve noticeably improved performance in terms of overhead and percentage of missed spectrum opportunities, thus making it well suited for use in CR networks.

Published in:

IEEE Communications Letters  (Volume:14 ,  Issue: 9 )