By Topic

CuHMMer: A load-balanced CPU-GPU cooperative bioinformatics application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Ping Yao ; School of Computer Science and Technology, University of Science and Technology of China, Hefei, 230027, China ; Hong An ; Mu Xu ; Gu Liu
more authors

GPUs have recently been used to accelerate data-parallel applications for they provide easier programmability and increased generality while maintaining the tremendous memory bandwidth and computational power. Most of those applications use CPU as a controller who decides when GPUs run the computing-intensive tasks. This CPU-control-GPU-compute pattern wastes much of CPU's computational power. In this paper, we present a new CPU-GPU cooperative pattern for bioinformatics applications which can use both of CPU and GPU to compute. This pattern includes two parts: 1) the load-balanced data structure which manages data to keep the computational efficiency of GPU high enough when the length distribution of sequences in a sequence database is very uneven; 2) multi-threaded code partition which schedules computing on CPU and GPU in a cooperative way. Using this pattern, we develop CuHMMer based on HMMER which is one of the most important algorithms in bioinformatics. The experimental result demonstrates that CuHMMer get 13x to 45x speed up over available CPU implementations and could also outperform the traditional CUDA implementations which use CPU-control-GPU-compute pattern.

Published in:

High Performance Computing and Simulation (HPCS), 2010 International Conference on

Date of Conference:

June 28 2010-July 2 2010