By Topic

Environment mapping using probabilistic quadtree for the guidance and control of autonomous mobile robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cocaud, C. ; Dept. of Mech. Eng., R. Mil. Coll. of Canada, Kingston, ON, Canada ; Jnifene, A.

This paper presents the implementation of an environment mapping technique based on a probabilistic quadtree which records the location of static and dynamic obstacles, as well as the certainty over each obstacle's estimated position. The quadtree-based map is updated online (i.e. near-real time) based on multi-sensor feeds originating from one to three X80 mobile robots operating simultaneously. The probabilistic quadtree map is part of a guidance and navigation control system which combines a Genetic Algorithm-based global path planner and a Potential Field local controller. The centralized map is shared by all mobile robots although each robot has an independent controller. Performance of the proposed method for this guidance and navigation control system is demonstrated experimentally with the Dr. Robot's ™ wireless X80 mobile robots.

Published in:

Autonomous and Intelligent Systems (AIS), 2010 International Conference on

Date of Conference:

21-23 June 2010