Cart (Loading....) | Create Account
Close category search window

Using a randomized path planner to generate 3D task demonstrations of robot operations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Belghith, K. ; Univ. de Sherbrooke, Sherbrooke, QC, Canada ; Kabanza, F. ; Hartman, L.

In this paper we describe a new randomized path-planning approach presenting two novel features that are useful in various complex real-world applications. First, it handles zones in the robot workspace with different degrees of desirability. Given the random quality of paths that are calculated by traditional randomized approaches, this provides a mean to specify a sampling strategy that controls the search process to generate better paths by simply annotating regions in the free workspace with degrees of desirability. Second, our approach can efficiently re-compute paths in dynamic environments where obstacles and zones can change shape or move concurrently with the robot. The new path planner is implemented within an automated planning application for generating 3D tasks demonstrations involving a teleoperated robot arm on the International Space Station (ISS). A typical task demonstration involves moving the robot arm from one configuration to another. Our objective is to automatically plan the position of cameras to film the arm in a manner that conveys the best awareness of the robot trajectory to the user. For a given task, the robot trajectory is generated using the new path planner. The latter not only computes collision free paths but also takes into account the limited direct view of the ISS, the lighting conditions and other safety constraints about operating the robot. A suitable camera planning system is then used to find the best sequence of camera shots following the robot on its path.

Published in:

Autonomous and Intelligent Systems (AIS), 2010 International Conference on

Date of Conference:

21-23 June 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.