By Topic

Learning From Humans: Agent Modeling With Individual Human Behaviors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hiromitsu Hattori ; Graduate School of Informatics, Kyoto University, Kyoto, Japan ; Yuu Nakajima ; Toru Ishida

Multiagent-based simulation (MABS) is a very active interdisciplinary area bridging multiagent research and social science. The key technology to conduct truly useful MABS is agent modeling for reproducing realistic behaviors. In order to make agent models realistic, it seems natural to learn from human behavior in the real world. The challenge presented in this paper is to obtain an individual behavior model by using participatory modeling in the traffic domain. We show a methodology that can elicit prior knowledge for explaining human driving behavior in specific environments, and then construct a driving behavior model based on the set of prior knowledge. In the real world, human drivers often perform unintentional actions, and occasionally, they have no logical reason for their actions. In these cases, we cannot rely on prior knowledge to explain them. We are forced to construct a behavior model with an insufficient amount of knowledge to reproduce the driving behavior. To construct such individual driving behavior model, we take the approach of using knowledge from others to complement the lack of knowledge from the target. To clarify that the behavior model including prior knowledge from others offers individuality in driving behavior, we experimentally confirm that the driving behaviors reproduced by the hybrid model correlate reasonably well with human behavior.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans  (Volume:41 ,  Issue: 1 )