By Topic

Efficient Estimation of Variance and Covariance Components: A Case Study for GPS Stochastic Model Evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bofeng Li ; Dept. of Surveying & Geo-Inf. Eng., Tongji Univ., Shanghai, China ; Yunzhong Shen ; Lizhi Lou

The variance and covariance component estimation (VCE) has been extensively investigated. However, in real application, the bottleneck problem is the huge computation burden, particularly when many variance and covariance components are involved for many heterogeneous observations. The objective of this paper is to develop a new method allowing the efficient estimation of variance and covariance components. The core of the new method is to construct an orthogonal complement matrix of the coefficient matrix in a Gauss-Markov model using only the coefficient matrix itself. Therefore, the constructed matrix and the computed discrepancies of measurements with each other, which are the essential inputs for the VCE, are invariant in the iterative procedure of computing the variance and covariance components. As a result, the computation efficiency is significantly improved. As a case study, we apply the new method to evaluate the GPS stochastic model with 15 variance and covariance components demonstrating its superior performance. Comparing with the traditional VCE method, the equivalent results are achievable, and the computation efficiency is improved by 34.2%. In the future, much more sensors will be available, and plentiful data can be acquired. Therefore, the new method will be very promising to efficiently estimate the variance and covariance components of the measurements from the different sensors and reasonably balance their contributions to the fused solution, benefiting the higher time-resolution solutions.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 1 )