Cart (Loading....) | Create Account
Close category search window
 

Boosting Green GaInN/GaN Light-Emitting Diode Performance by a GaInN Underlying Layer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yong Xia ; Dept. of Phys., Rensselaer Polytech. Inst., Troy, NY, USA ; Hou, Wenting ; Zhao, Liang ; Zhu, Mingwei
more authors

The light output of 530 nm green GalnN/GaN light-emitting diodes on sapphire has been nearly doubled by the insertion of a 130-nm GalnN underlayer (UL) between the n-GaN electron injection layer and the quantum-well (QW) active region. Under variation of the alloy composition, best results were obtained for an x = 6.3% Ga1-xInxN UL. By low-temperature depth-resolved cathodoluminescence spectroscopy, an interplay of the impurity-related donor-acceptor pair recombination, the UL, and the QW emission has been observed. We propose that the resonance and level alignments between the defect and UL levels reroute excitation toward radiative recombination in the QWs.

Published in:

Electron Devices, IEEE Transactions on  (Volume:57 ,  Issue: 10 )

Date of Publication:

Oct. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.