By Topic

Electrical TCAD Simulations of a Germanium pMOSFET Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

A commercial technology computer-aided design device simulator was extended to allow electrical simulations of sub-100-nm germanium pMOSFETs. Parameters for generation/recombination mechanisms (Shockley-Read-Hall, trap-assisted tunneling, and band-to-band tunneling) and mobility models (impurity scattering and mobility reduction at high lateral and transversal field) are provided. The simulations were found to correspond well with the experimental I- V data on our Ge transistors at gate lengths down to 70 nm and various bias conditions. The effect of changes in halo dose and extension energies is discussed, illustrating that the set of models presented in this paper can prove useful to optimize and predict the performance of new Ge-based devices.

Published in:

Electron Devices, IEEE Transactions on  (Volume:57 ,  Issue: 10 )