By Topic

Methods of Resistance Estimation in Permanent Magnet Synchronous Motors for Real-Time Thermal Management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wilson, S.D. ; Electr. Machines & Drives Res. Group, Univ. of Sheffield, Sheffield, UK ; Stewart, P. ; Taylor, B.P.

Real-time thermal management of electrical machines relies on sufficiently accurate indicators of internal temperature. One indicator of temperature in a permanent-magnet synchronous motor (PMSM) is the stator winding resistance. Detection of PMSM winding resistance in the literature has been made on machines with relatively high resistances, where the resistive voltage vector is significant under load. This paper describes two techniques, which can be applied to detect the winding resistance, through “angle” and “magnitude” current injection. Two further methods are described, which discriminate injected current and voltages from motoring currents and voltages: “unipolar” and “bipolar” separation. These enable the resistance to be determined, and hence the winding temperature in permanent-magnet machines. These methods can be applied under load, and in a manner that does not disturb motor torque or speed. The method distinguishes between changes in the electromotive force constant and the resistive voltage. This paper introduces the techniques, while a companion paper covers the application of one of the methods to a PMSM drive system.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:25 ,  Issue: 3 )