By Topic

Crosstalk-Preventing Scheduling in Single- and Two-Stage AWG-Based Cell Switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Andrea Bianco ; Dipartimento di Elettronica, Politecnico di Torino, Torino, Italy ; David Hay ; Fabio Neri

Array waveguide grating (AWG)-based optical switching fabrics are receiving increasing attention due to their simplicity and good performance. However, AWGs are affected by coherent crosstalk that can significantly impair system operation when the same wavelength is used simultaneously on several input ports. To permit large port counts in a N × N AWG, a possible solution is to schedule data transmissions across the AWG preventing switch configurations that generate large crosstalk. We study the properties and the existence conditions of switch configurations able to control coherent crosstalk. The presented results show that, by running a properly constrained scheduling algorithm to avoid or minimize crosstalk, it is possible to operate an AWG-based switch with large port counts without significant performance degradation.

Published in:

IEEE/ACM Transactions on Networking  (Volume:19 ,  Issue: 1 )