By Topic

Analysis of Wormlike Robotic Locomotion on Compliant Surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zarrouk, D. ; Fac. of Mech. Eng., Technion - Israel Inst. of Technol., Haifa, Israel ; Sharf, I. ; Shoham, M.

An inherent characteristic of biological vessels and tissues is that they exhibit significant compliance or flexibility, both in the normal and tangential directions. The latter in particular is atypical of standard engineering materials and presents additional challenges for designing robotic mechanisms for navigation inside biological vessels by crawling on the tissue. Several studies aimed at designing and building wormlike robots have been carried out, but little was done on analyzing the interactions between the robots and their flexible environment. In this study, we will analyze the interaction between earthworm robots and biological tissues where contact mechanics is the dominant factor. Specifically, the efficiency of locomotion of earthworm robots is derived as a function of the tangential flexibility, friction coefficients, number of cells in the robot, and external forces.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 2 )