Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Reduction in the Efficiency-Droop Effect of InGaN Green Light-Emitting Diodes Using Gradual Quantum Wells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ya-Ju Lee ; Inst. of Electro-Opt. Sci. & Technol., Nat. Taiwan Normal Univ., Taipei, Taiwan ; Chih-Hao Chen ; Chia-Jung Lee

The effect of gradual indium gallium nitride (InGaN) quantum wells (QWs) on the suppression of efficiency-droop in green light-emitting diodes (LEDs) is numerically investigated. The presented scheme increases the internal quantum efficiency by 45.5% at I=20 mA and 55.7% at I=100 mA, indicating a considerable reduction of efficiency-droop. This improvement is attributable mainly to the use of the gradual InGaN QW's structure that significantly alleviates band bending in the valence band, improving the transport efficiency of injected holes above that of conventional LEDs. The radiative recombination is thus enhanced as the overlap between electron and hole wave functions is increased. Most importantly, the leakage of injected electrons to p-type region is correspondingly reduced, in turn suppressing the efficiency-droop in the LED.

Published in:

Photonics Technology Letters, IEEE  (Volume:22 ,  Issue: 20 )